
Bug propagation and debugging in asymmetric software structures

Damien Challet
Theoretical Physics, Oxford University, 1-3 Keble Road, Oxford OX1 3NP, United Kingdom

Andrea Lombardoni
Department of Computer Science, Eidgenossische Technische Hochschule, 8092 Zürich, Switzerland

(Received 20 June 2003; revised manuscript received 24 November 2003; published 19 October 2004)

We address the issue of how software components are affected by the failure of one of them, and the inverse
problem of locating the faulty component. Because of the functional form of the incoming link distribution of
software dependence network, software is fragile with respect to the failure of a random single component.
Locating a faulty component is easy if the failure only affects its nearest neighbors, while it is hard if it
propagates further.

DOI: 10.1103/PhysRevE.70.046109 PACS number(s): 89.75.Da, 89.75.Hc, 89.20.Ff

Large scale research on small-world networks began a
few years ago after the introduction by Watts and Strogatz of
their famous model[1]. During the last few years, many
real-life networks turned out to be of small-world nature with
a scale-free link distribution[2]. The digital world seems
particularly rich in this type of network at all scales: wires in
computers[3], software function calls[4], source-file depen-
dencies[5], software modules[6,4,7–9], Internet physical
network [10], and links between web pages[11]. Notably
missing from this list is the network between software pack-
ages, which will be measured in the first part of this paper.

Whereas previous work looked for reasonable explana-
tions of why software networks are scale-free[4,9], we ad-
dress here bug propagation and debugging in scale-free net-
works, a major issue that has been neglected so far. We shall
argue that software scale-free networks provide a natural ex-
planation of software fragility.

Scale-free networks in software were recently investi-
gated in a game and in the Java API(application program-
ming interface) [6]. The nodes were, respectively, the mod-
ules of the game(sound, graphics, etc.) and the objects of the
standard Java API. In both cases, scale-free networks were
discovered. As noted in subsequent work[4,7,8], Ref. [6] did
not take into account the directed nature of these networks,
which are asymmetric. All these work focus on microscopic
software components, such as functions and objects. Here we
study the dependence between program packages in a Linux
distribution, an important structure which has not been inves-
tigated yet, adding an element to the hierarchy of scale-free
networks found in the digital world. We then discuss the
fragility of software with respect to the failure of a single
component and the difficulty of debugging. As large net-
works are required for this study, we shall also use function
call networks of open-source projects.

Let us first study software components: a computer uses a
collection of software components that are linked through a
network of dependence. For instance a program that displays
text needs fonts that are provided by another component. In
Linux distributions, pieces of software are often provided as
packages. As the name indicates, a package is a collection of
software components. Therpm command can be used to
extract the network of package dependences. More precisely,

rpm -q --whatrequires perl lists all the packages
that need thePERL package, making it easy to build the pack-
age adjacency matrix. One of us wrote a program called
RPMGRAPHthat produces a diagram of this network[12]. We
studied an installation ofREDHAT 8.0 that contained 1460
packages[14]. The cumulative densityPùsqd=Psq8ùqd of
the number of incoming linksq per package is plotted in Fig.
1; we normalizePùsqd so thatPùs1d=1, which amounts to
leave out ofPùsqd the nodes that are not needed by any other
node. The distributionPùsqd has not enough points to be
fitted accurately with a power law. The cumulative distribu-
tion of outgoing links,Pùskd for k.0, is also plotted in Fig.
1. The asymmetry between the outgoing and incoming link
distributions appears clearly.

The rpm command can give partial access to a more de-
tailed network:rpm --requires perl lists the subpack-
ages needed by perl. For instance, perl requires subpackage
PERL(BYTES), which is provided by packagePERL-BASE.
However, it is not possible to determine which subpackages
are needed by subpackagePERL(BYTES), because therpm
command cannot be applied to subpackages. Therefore, the

FIG. 1. Cumulative distribution of incoming links(circles) and
outgoing links(squares) between packages in a computer running
RedHat 8.0. Empty and full symbols are obtained withrpm -q
- -whatrequires and rpm -q - -requires , respectively.
The continuous line has a −1 slope.

PHYSICAL REVIEW E 70, 046109(2004)

1539-3755/2004/70(4)/046109(5)/$22.50 ©2004 The American Physical Society70 046109-1

full subpackage dependency network cannot be extracted,
and we are left with the distribution of the number of sub-
package incoming links, and the distribution of outgoing
links from packages to subpackages. This provides however
a much more convincing evidence for the power-law nature
of the incoming link distribution: a fit over the whole data set
givesPùsqd~q−a+1 with a.2.0.

Figure 2 shows that the numbers of incoming and outgo-
ing links of a given software package are generally corre-
lated, a property also seen in links between functions in
source code and class collaboration graphs[4]. Simply put,
this shows that some packages such as libraries provide a
functionality to other programs. As we shall see below, this is
one of the causes of software fragility.

In order to study bug propagation, we need better, more
complete data. Therefore, we will make use of function call
networks: In the latter, functions are the nodes, and function
calls are the links: in the following example written inC:

int f(int x) {
return 2*g sx d;
}
f calls g, hence links tog. Large open-source programs

are ideal candidates for investigation. References[4,9] con-
sidered the largest connected component. We are interested
here in whole networks, as we focus on bug dynamics and
debugging. We studiedLINUX kernel 2.4.18,MOZILLA Inter-
net browser 1.3a,MYSQL database 4.0.2, andAPACHE web
server 2.0.32[14]. Extracting the function call network from
a source code written inC was done using simple scripts. We
excludedC-keywords from the graph. Figure 3 reports that
Pùsqd is also a power law. It is noticeable that these data
seem to suffer from finite size effects similar to those seen
for the package dependences, the more data points, the closer
to 2 the exponent. We emphasize here thata=2 is the value
that marks the border where the average number of times a
piece of software is used diverges when the size of the net-
work goes to infinity. This is possible in software because
being reused does not cost anything to a piece of software.
Therefore, the average number of programs that use a given
piece of software is free to diverge with the size of the net-
work. The regularity of the incoming link distribution expo-

nent suggests some sort of universality: the source code and
program networks, that is, the microscopic and mesoscopic
levels, respectively, have roughly the same incoming link
exponent. The latter is also very close to exponents measured
in macroscopic networks of links between web pages and
web sites, that is, of the phenomenology resulting from the
actual use of computers and programs. At all levels, being
linked is free for the nodes.

On the other hand, Fig. 4 shows the outgoing distribution,
which may have power-law parts, but it is impossible to
assert it from our data, because we have less than a decade of
straight line. Previous work fitted this distribution with a
power law Pùskd~k−b+1 in the part that correspond tok
ø10 here and found exponentsb.2.4. If this is the case,
there are strong cutoffs, much stronger than for the incoming
link distribution. On the other hand, it seems as reasonable to
fit the part 10,k,100 with a power law, in which case a
much larger exponent(more than 4) is found. However, we
only conclude from this graph that the asymmetry between
incoming and outgoing link distribution is considerable,
which is enough for our purpose.

There are indeed special reasons for this asymmetry being
more pronounced in software than in other structures. As

FIG. 2. Number of outgoing links vs number of incoming links
for the packages ofREDHAT 8.0.

FIG. 3. Cumulative distribution of incoming links inLINUX

(circles), MOZILLA (squares), APACHE (diamonds), and MYSQL (tri-
angles). The dashed line is 1/q.

FIG. 4. Cumulative distribution of outgoing links inLINUX

(circles), MOZILLA (squares), APACHE (diamonds), and MYSQL

(triangles).

D. CHALLET AND A. LOMBARDONI PHYSICAL REVIEW E 70, 046109(2004)

046109-2

pointed out by Ref.[4], the asymmetry itself is due to soft-
ware reuse: some pieces of software are designed to provide
functionalities that other programs can use. In addition, writ-
ing a program, hence linking to previously written piece of
software, is costly. As the number of dependences of a pro-
gram is related to its complexity, the average number of out-
going links cannot diverge. Remarkably, the asymmetry of
distributions is less pronounced for instance in links between
web pages. We argue that linking to a web page can be
almost free, in contrast to the amount of work needed to
write software pieces, which needs a logical structure, hence
the large asymmetry found here.

This leads us to bug propagation. Software is well known
to be fragile. As we shall argue in the following, this is due
in part to its structure. Assume that all the nodes but one,
drawn at random, are perfectly working. What is the conse-
quence of this imperfection? Software failures actually
propagate on the dependence graph: if a node(function or
software package) is faulty, the nodes calling it are likely to
work less than optimally; by extension the nodes calling a
node that calls the faulty node will probably be affected, etc.
This also raises the question of how hard it is to locate the
faulty node.

Interestingly, the failure can also propagate from a micro-
scopic software structure to a macroscopic one. For instance,
a function trying to access a memory address outside the
allocated memory space can crash the whole program to
which it belongs. If it does, the problem now lies at the level
of software packages. If the operating system has no memory
protection, this causes a system crash. Then, if other comput-
ers depend on the system that went down, they will also be
affected.

In this paper, we shall focus on a simpler problem by
making simplifying assumptions on the influence of a single
bug. As many bugs are not nearly as dangerous as illegal
memory access, but(annoying) imperfections or faults, their
influence is not as dramatic. Therefore, we assume that the
influence of a faulty node is only determined by the depen-
dence network to which it belongs. A node is either working
(contains no bug), faulty (contains a bug), or affected by a
bug. This is somehow akin to virus propagation[13], where
a node is either susceptible, infectious, or resistant.

First we consider the simple optimistic case where only
the nearest neighbors are affected by a faulty node. The
asymmetry of the structure implies that the bug propagates to
a typically large number of nodes. On the other hand, once
an incorrect behavior is detected, locating the faulty node is
easy. Therefore, in the most optimistic case, software is frag-
ile, but fixing it is relatively easy once an anomaly is de-
tected.

This view is, however, too simplistic: as shown by the
illegal memory example, bugs do propagate further than their
next neighbors. Let us be pessimistic, and assume that they
propagate as far as possible: if a node is faulty, all the nodes
that point to it directly or indirectly are equally affected. In
contrast to virus propagation, bug influence is instantaneous.
We are now left with the study of the properties of influence
basins. Of particular interest is the influence basin size dis-
tribution Psbd which can be computed by iterating the graph
matrix G [15]. The dependence ofi on j is denoted byGi,j

=1, (Gi,j =0 otherwise). ElementsGndi,j contains the number
of paths of lengthn betweeni and j , hence, in order to
compute the basin size distribution, one needs to compute
theB=ok=0

N Gk, whereN is the number of nodes. Ifi belongs
to the influence basin ofj , Bi,j .0. The size of failure propa-
gation basin of nodej is then simply given by bj
=oisgnsBi,jd. Figure 5 shows an inverse Zipf plot of mea-
sured basin sizes: such a plot consists in ranking the basins
according to their sizes and plotting the rankr versusb [16].
This is equivalent to integrating: ifPsbd~b−g, r ~b−g+1 [17].
The exponents of the power laws seem to be either −2
(MOZILLA) or −5/2 (LINUX); the exponent ofAPACHE is un-
clear. A −2 exponent was also obtained for the basins of
Internet physical network[18].

One can also define a debugging basin: suppose that a
piece of softwarei is affected by the failure of another pro-
gram, but is not buggy itself; what is the maximum number
of pieces of softwarewi =o jBi,j that are to be inspected in
order to locate the faulty node? Given the asymmetry of
incoming and outgoing link distribution, one would naively
expect thatPsbd andPswd differ notably. This is clearly not
the case: the debugging basin distributions seem to follow
closely their associated bug influence basins distributions,
and share roughly the same exponents(see Fig. 5), although
Pswd is not as smooth asPsbd, making it difficult to fit it.

This similarity is also seen in the package dependence
network(Fig. 6), wherePsbd andPswd have power-law parts
both with same exponent −3/2; note that our data set is too
small to allow being definitive. In addition, the bug influence
basis distribution as an early cutoff.

It is tempting to relate the similarity between the expo-
nents of the two basin distributions to branching processes,
which describe random tree growth. Starting from a root
node (generation 0), at time t each nodei of generationt
−1 branches into a random numberr istd of new nodes. The
average number of new nodeskrl in the subtree is called the
branching ratio. Of particular interest to us is the following
property: if krl=1, the subtree(i.e., basin) size probability
distribution of a randomly drawn nodePsbd,b−3/2. If krl.1
and kr2l,`, Psbd,b−2 [20]; if the branching variancekr2l
is infinite, any exponent can be obtained[21]. These results

FIG. 5. Basin size distribution of failure propagation on function
call graphs. Continuous lines are for bug influence basins and
dashed lines are for debugging basins.

BUG PROPAGATION AND DEBUGGING IN ASYMMETRIC… PHYSICAL REVIEW E 70, 046109(2004)

046109-3

do not apply directly to software structures, as the latter are
not perfect trees. But what branching processes suggest is
that the exponent of basin distributions is controlled by the
branching ratio and variance. The branching ratio is nothing
else than the average number of outgoing linkskkl or incom-
ing links kql in the context of software structures, and both
are equal. If the outgoing link distribution is a power law and
has an exponent smaller than 3[19], both branching vari-
ances are infinite. At first, this provides an intuitive although
incomplete explanation of why the basin distribution expo-
nents are the same. Although the analogy is not perfect, it
may be that there is also some sort of universality with re-
spect to basin distributions in these networks, since the ex-
ponent found seem to be multiples of 1/2. This is an inter-
esting open challenge. The question is whether larger
exponents, hence more robust and easier-to-debug software,
can be obtained at all. If the answer is negative, the fragility
software and the difficulty of debugging are doomed not to
be bounded in the worst case.

A still simple but more realistic model of bug propagation
consists in assuming that a node linking to a faulty or af-
fected node is itself affected with probabilityp. The rationale
is the following: assume that nodei calls node j . In the
context of software packages,p takes into account the fact
that j , the faulty/affected node contains subpackages(see
above) which are typically not all defective/affected. Simi-
larly, the subpackages ofi do not all link to a faulty subpack-
age of j . For instance, if there aren subpackages in bothi
and j , and if there aref faulty subpackages inj , and if every
subpackage ofi has l links that point each to a randomly
chosen subpackage ofj , using elementary combinatorics,
one finds forn− f . l,

p = 1 −3S
n − f

l
D

Sn

l
D 4

n

= 1 −F sn − fd ! sn − ld!
sn − f − ld ! n!

Gn

, s1d

wheres n−f
l

d / s n
l
d is the probability that all thel links point to a

working function. Assuming thatp is constant for all the
links in the network, one is left with a bond percolation
problem for directed graphs. It is known that if the exponent
of the link distribution is smaller than 3[13], with probabil-
ity 1 a finite fraction of the network belongs to a percolation
cluster, which means that the influence of single bug is likely
to be as large as ifp=1 for any value ofp. Therefore, the
picture drawn in the previous paragraph and Figs. 5 and 6
still applies. On the other hand, the short-tailed nature of the
outgoing link distribution implies that the basin of debugging
depends on the value ofp: there is a critical valuepc of p
such that forpc,p, debugging is easy, while debugging is
hard if p.pc.

Finally, another cause for software fragility comes from
the peculiar role played by libraries. As shown in Fig. 2,
software packages that are meant to be reused are accord-
ingly more often linked to. When a program is installed or
upgraded, it often happens that it needs an updated version of
some library. The dilemma, partly responsible for the so-
called “DLL hell” in WINDOWS operating systems, is the fol-
lowing: if one does not install the new version of the library,
the new program is likely not to work properly. If one up-
dates the library, all the programs that link to its old version
are susceptible to be broken. This provides a natural mecha-
nism for progressive worsening of operating system instabil-
ity. There are two solutions: either one implements a way of
using several version of libraries at the same time, or one
systematically upgrades all the programs using the library in
question. Assuming that new versions of programs are avail-
able, the first possibility applies mostly to commercial pro-
grams, because the cost associated with upgrading expensive
software may be very high; the second solution is the way
for instanceLINUX distributions work, but leads sometimes
to upgrading a very large number of programs, which is
frowned up by the users. At any rate, one should not under-
estimate the importance of this problem: not only the distri-
bution of incoming links implies that the average number of
affected programs diverges with the system size, but even
worse, as shown by Fig. 2, libraries are characterized by an
even larger number of incoming links.

In conclusion, we argued that the fragility of software can
be in part attributed to its very structure, which unfortunately
seems to arise naturally from optimization considerations.

D.C. thanks Paolo De Los Rios, Andrea Capocci, and
Ginestra Bianconi for useful discussions.

FIG. 6. Basin size distribution of failure propagation on
package-package dependency graph. The continuous line is for bug
influence basins and dashed line is for debugging basins.

D. CHALLET AND A. LOMBARDONI PHYSICAL REVIEW E 70, 046109(2004)

046109-4

[1] D. J. Watts and S. H. Strogatz, Nature(London) 393, 440
(1998).

[2] R. Albert and A.-L. Barabási, Rev. Mod. Phys.74, 47 (2002).
[3] R. Ferrer i Cancho, C. Janssen, and R. V. Solé, Phys. Rev. E

64, 046119(2001).
[4] C. R. Myers, Phys. Rev. E68, 046116(2003); e-print cond-

mat/0305575.
[5] de Mouraet al., Phys. Rev. E68, 017102(2003).
[6] S. Valverde, R. Ferrer Cancho, and R. V. Solé, Europhys. Lett.

60, 512 (2002).
[7] R. Whelldon and S. Counsell, e-print cs.SE/0305037.
[8] A. Potanin et al., Report No. CS-TR-02/30, 2002(unpub-

lished).
[9] S. Valverde and R. V. Solé, e-print cond-mat/0307278.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Com-
mun. Rev.29, 251 (1999).

[11] R. Albert, H. Jeong, and A.-L. Barabasi, Nature(London) 401,
130 (1999).

[12] A. Lombardoni, RPMGRAPH, http://www.inf.ethz.ch/personal/

lombardo/projects/(not to be confused with Jeff Johnson’s
RPMGRAPH).

[13] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett.86,
3200 (2001).

[14] REDHAT, www.redhat.com;LINUX , www.kernel.org;MOZILLA ,
www.mozilla.org; MYSQL, www.mysql.com;APACHE, www.a-
pache.org.

[15] B. Andrásfai,Graph Theory: Flows, Matrices, (Hilger, New
York, 1991).

[16] G. K. Zipf, Human Behavior and the Principle of Least Effort
(Addison-Wesley, Cambridge, 1949).

[17] Usual Zipf plots displayb versus the rankr, which is less
intuitive, as the apparent slope is −1/sg−1d.

[18] G. Caldarelli, R. Marchetti, and L. Pietronero, Europhys. Lett.
52, 386 (2000).

[19] R. A. Albert, J. Jeong, and A.-L. Barabási, Nature(London)
406, 378 (2000).

[20] P. De Los Rios, Europhys. Lett.56, 898 (2001).
[21] P. De Los Rios(private communication).

BUG PROPAGATION AND DEBUGGING IN ASYMMETRIC… PHYSICAL REVIEW E 70, 046109(2004)

046109-5

