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Bug propagation and debugging in asymmetric software structures
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We address the issue of how software components are affected by the failure of one of them, and the inverse
problem of locating the faulty component. Because of the functional form of the incoming link distribution of
software dependence network, software is fragile with respect to the failure of a random single component.
Locating a faulty component is easy if the failure only affects its nearest neighbors, while it is hard if it
propagates further.
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Large scale research on small-world networks began gom -q --whatrequires perl lists all the packages
few years ago after the introduction by Watts and Strogatz ofhat need theErL package, making it easy to build the pack-
their famous mode[1]. During the last few years, many age adjacency matrix. One of us wrote a program called
real-life networks turned out to be of small-world nature with rRpmcrAPHthat produces a diagram of this netwdil]. We
a scale-free link distributiorf2]. The digital world seems studied an installation oREDHAT 8.0 that contained 1460
particularly rich in this type of network at all scales: wires in packageg14]. The cumulative densitP-(q)=P(q’ =q) of
computerg3], software function call$4], source-file depen-  {he number of incoming linkg per package is plotted in Fig.
dencies[5], software moduleg6,4,7—-9, Internet physical 1; we normalizeP_(q) so thatP—(1)=1, which amounts to

network [10], and links between web pag¢$l]. Notably
missing from this list is the network between software pack—leave out ofP~(q) the nodes that are not needed by any other

ages, which will be measured in the first part of this paper. node. The d|str|bu_t|orP>(q) has not enough p?'”ts _to .be
Whereas previous work looked for reasonable explanat!tted accura';ely ywth a power law. The cumulative _d|str|bu-
tions of why software networks are scale-fii@ed], we ad- tion of outgoing links,P~ (k) for k>0, is also plotted in Fig.
dress here bug propagation and debugging in scale-free nek- The asymmetry between the outgoing and incoming link
works, a major issue that has been neglected so far. We shélistributions appears clearly.
argue that software scale-free networks provide a natural ex- Therpm command can give partial access to a more de-
planation of software fragility. tailed network:rpm --requires perl lists the subpack-
Scale-free networks in software were recently investi-ages needed by perl. For instance, perl requires subpackage
gated in a game and in the Java ARpplication program- PERLBYTES), which is provided by packag®ERL-BASE
ming interface [6]. The nodes were, respectively, the mod- However, it is not possible to determine which subpackages
ules of the gamesound, graphics, efcand the objects of the are needed by subpackageruBYTES), because thepm
standard Java API. In both cases, scale-free networks wegmmand cannot be applied to subpackages. Therefore, the
discovered. As noted in subsequent wptk7,g, Ref.[6] did

not take into account the directed nature of these networks, 10° .
which are asymmetric. All these work focus on microscopic .
software components, such as functions and objects. Here we e »
study the dependence between program packages in a Linux 10" ¢ o W .
distribution, an important structure which has not been inves- o
tigated yet, adding an element to the hierarchy of scale-free _
networks found in the digital world. We then discuss the 5107 F
fragility of software with respect to the failure of a single
component and the difficulty of debugging. As large net- ° "
works are required for this study, we shall also use function ] . .
call networks of open-source projects. .
Let us first study software components: a computer uses a ) . )
collection of software components that are linked through a 10° i0' 10° 10°
network of dependence. For instance a program that displays
text needs fonts that are provided by another component. In  FiG. 1. Cumulative distribution of incoming linkgircles and
Linux distributions, pieces of software are often provided A%utgoing links(squarey between packages in a computer running
packages. As the name indicates, a package is a collection gedHat 8.0. Empty and full symbols are obtained witim -q
software components. Thggm command can be used to - -whatrequires and rpm -q - -requires , respectively.
extract the network of package dependences. More preciselyhe continuous line has a -1 slope.
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FIG. 2. Number of outgoing links vs number of incoming links FIG. 3. Cumulative distribution of incoming links iniNUX
for the packages aReDHAT 8.0. (circles, MozILLA (squarey APACHE (diamond$, and MysQL (tri-
angles. The dashed line is 4/

full subpackage dependency network cannot be extracted,
and we are left with the distribution of the number of sub-Nnent suggests some sort of universality: the source code and
package incoming links, and the distribution of outgoingProgram networks, that is, the microscopic and mesoscopic
links from packages to subpackages. This provides howevdgVels, respectively, have roughly the same incoming link
a much more convincing evidence for the power-law r]atur(_‘_exponent. The_ latter is also very close to exponents measured
of the incoming link distribution: a fit over the whole data setin macroscopic networks of links between web pages and
gives P—(g) < q ! with @=2.0. web sites, that is, of the phenomenology resulting from t.he

Figure 2 shows that the numbers of incoming and outgof’_‘Ctual use of computers and programs. At all levels, being
ing links of a given software package are generally correlinked is free for the nodes. o
lated, a property also seen in links between functions in ©On the other hand, Fig. 4 shows the outgoing distribution,
source code and class collaboration grapijs Simply put, ~Which may have power-law parts, but it is impossible to
this shows that some packages such as libraries provide &Sert it from our data, because we have less than a decade of
functionality to other programs. As we shall see below, this isStraight line. Prewo_uElvyork fitted this distribution with a
one of the causes of software fragility. power law P (k) e<k™#" in the part that correspond to

In order to study bug propagation, we need better, morés 10 here and found exponengs=2.4. If this is the.case,.
complete data. Therefore, we will make use of function callthere are strong cutoffs, much stronger than for the incoming
networks: In the latter, functions are the nodes, and functiofink distribution. On the other hand, it seems as reasonable to

calls are the links: in the following example written dn fit the part 16<k<100 with a power law, in which case a
int f(int x) { much larger exponer(more than 4 is found. However, we
return 2*g  (x); only conclude from this graph that the asymmetry between
) incoming and outgoing link distribution is considerable,

f callsg, hence links tag. Large open-source programs Which is enough for our purpose. _ _
are ideal candidates for investigation. Referer{éed] con- There are mdeed_ special reasons f_or this asymmetry being
sidered the largest connected component. We are interest8T€ Pronounced in software than in other structures. As
here in whole networks, as we focus on bug dynamics and 10°
debugging. We studiedNux kernel 2.4.18MOzILLA Inter- s
net browser 1.3aMysQL database 4.0.2, angPACHE web o' | "
server 2.0.3714]. Extracting the function call network from ":é
a source code written ia was done using simple scripts. We ";
excludedc-keywords from the graph. Figure 3 reports that oy 0?..
P-(qg) is also a power law. It is noticeable that these data = .
seem to suffer from finite size effects similar to those seen 10° F YA
for the package dependences, the more data points, the closer . .
to 2 the exponent. We emphasize here tha® is the value 10+ | .
that marks the border where the average number of times a
piece of software is used diverges when the size of the net- ) ‘
work goes to infinity. This is possible in software because 10° 10’ 10°
being reused does not cost anything to a piece of software.

Therefore, the average number of programs that use a given FIG. 4. Cumulative distribution of outgoing links iniNUX
piece of software is free to diverge with the size of the net<circles, moziLLA (squarel APACHE (diamond$, and MYsQL
work. The regularity of the incoming link distribution expo- (triangles.
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pointed out by Ref[4], the asymmetry itself is due to soft- 100000
ware reuse: some pieces of software are designed to provide

functionalities that other programs can use. In addition, writ- 10000

ing a program, hence linking to previously written piece of

software, is costly. As the number of dependences of a pro- 1000 -7
gram is related to its complexity, the average number of out- i

going links cannot diverge. Remarkably, the asymmetry of 100 }
distributions is less pronounced for instance in links between

web pages. We argue that linking to a web page can be w0k
almost free, in contrast to the amount of work needed to
write software pieces, which needs a logical structure, hence
the large asymmetry found here.

This leads us to bug propagation. Software is well known
to be fragile. As we shall argue in the following, this is due N ) i :
in part to its structure. Assume that all the nodes but one, FIG. 5. Basin S|'ze dlstrlputlon of failure propagatlon on fu_nctlon
drawn at random, are perfectly working. What is the conse’all graphs. Continuous Ilngs are .for bug influence basins and
quence of this imperfection? Software failures actuallydashed lines are for debugging basins.

propagate on the_ dependence graph: if_a n_(cﬁdecti_on or
software packagds faulty, the nodes calling it are likely to =1, (G;;=0 otherwisg. Element(G");; contains the number

work less than optimally; by ext.ension the nodes calling ay paths of lengthn betweeni andj, hence, in order to
node that calls the faulty node will probably be affected, etccompute the basin size distribution, one needs to compute

This also raises the question of how hard it is to locate thg,o g=sN Gk \whereN is the number of nodes Ifbelongs
faulty node. k=0 '

; . .__to the influence basin gf B; ;> 0. The size of failure propa-
Interestingly, the failure can also propagate from a micro- .

. - . ation basin of nodej is then simpl iven byb;
scopic software structure to a macroscopic one. For mstancg,E J Py 9 YD,

function trving t ad tside the iSgn(B; ;). Figure 5 shows an inverse Zipf plot of mea-
a function trying to access a memory address outside g, o4 pasin sizes: such a plot consists in ranking the basins

allocated memory space can crash the whole program tg ; s ;
e . . ccording to their sizes and plotting the rankersusb [16].
which it belongs. If it does, the problem now lies at the IeveI.I.hiS is equivalent to integrating: B(b) b7, r b1 [17].

of softvyare pgckages. If the operating system _has no memony, exponents of the power laws seem to be either -2
protection, this causes a system crash. Then, if other comput- ) .
. 0zILLA) or —5/2 (LINUX); the exponent ORPACHE is un-
ers depend on the system that went down, they will also b . .
Clear. A -2 exponent was also obtained for the basins of

affected. Internet physical networkl8].

In' th|s. paper, we shall fpcus on a ;lmpler p“’b'e”.‘ by One can also define a debugging basin: suppose that a
making simplifying assumptions on the influence of a single

bug. As many bugs are not nearly as dangerous as iIIeg&'ece of software is affected by the failure of another pro-

L . . ~2'gram, but is not buggy itself; what is the maximum number
memory access, byannoying imperfections or faults, their f pi f soft -SB . th be i di
influence is not as dramatic. Therefore, we assume that thig P/eCeS Of softwarev=2,B;; that are to be inspected in
. L - order to locate the faulty node? Given the asymmetry of
influence of a faulty node is only determined by the depen-

L T .~ Incoming and outgoing link distribution, one would naively
dence network to which it belongs. A node is either working . .
(contains no buy faulty (contains a bug or affected by a expect thatP(b) and P(w) differ notably. This is clearly not

bug. This s somehow acn 10 Vi propagalas) where 1 S92 e debuging v fenbutions seer © folow
a node is either susceptible, infectious, or resistant. y 9 '

First we consider the simple optimistic case where onlyand share roughly the same expondsts Fig. 3, although

the nearest neighbors are affected by a faulty node. Thg(w) IS npt as _sm_ooth aB(b), mgklng it difficult to fit it
asymmetry of the structure implies that the bug propagates to This S|m|lar|ty is also seen in the package dependence
a typically large number of nodes. On the other hand, onc etwor!<(F|g. 6), whereP(b) andP(w) have power-law parts

an incorrect behavior is detected, locating the faulty node i9°th With same exponent ~3/2; note that our data set is too
easy. Therefore, in the most optimistic case, software is fra small to allow being definitive. In addition, the bug influence

ile, but fixing it is relatively easy once an anomaly is de-P2aSis distribution as an early cutoff.
tected. It is tempting to relate the similarity between the expo-

This view is, however, too simplistic: as shown by the nents of the two basin distributions to branching processes,

illegal memory example, bugs do propagate further than theirhich describe random tree growth. Starting from a root

next neighbors. Let us be pessimistic, and assume that th&Pde (generation § at timet each node of generationt

propagate as far as possible: if a node is faulty, all the nodest Pranches into a random numigit) of new nodes. The
that point to it directly or indirectly are equally affected. In @verage number of new nodgs in the subtree is called the

contrast to virus propagation, bug influence is instantaneou$ranching ratio. Of particular interest to us is the following
We are now left with the study of the properties of influenceProperty: if (r)=1, the subtredi.e., basin size probability
basins. Of particular interest is the influence basin size disdistribution of a randomly drawn nod®(b) ~b™32 If (r)>1
tribution P(b) which can be computed by iterating the graphand({r?) <, P(b)~b™2 [20]; if the branching variancér?)
matrix G [15]. The dependence afon | is denoted byG; is infinite, any exponent can be obtaingtl]. These results
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where(™)/(]) is the probability that all thé links point to a
working function. Assuming thap is constant for all the
links in the network, one is left with a bond percolation
problem for directed graphs. It is known that if the exponent
of the link distribution is smaller than BL3], with probabil-
ity 1 a finite fraction of the network belongs to a percolation
cluster, which means that the influence of single bug is likely
o o ) ] to be as large as ip=1 for any value ofp. Therefore, the
FIG. 6. Basin size distribution of failure propagation on picture drawn in the previous paragraph and Figs. 5 and 6
package-package dependency graph. The continuous line is for bugj)| applies. On the other hand, the short-tailed nature of the
influence basins and dashed line is for debugging basins. outgoing link distribution implies that the basin of debugging
depends on the value @f there is a critical valug, of p
such that forp,<p, debugging is easy, while debugging is
hard if p> p..
do not apply directly to software structures, as the latter are Finally, another cause for software fragility comes from
not perfect trees. But what branching processes suggest tise peculiar role played by libraries. As shown in Fig. 2,
that the exponent of basin distributions is controlled by thesoftware packages that are meant to be reused are accord-

branching ratio and variance. The branching ratio is nothindngly more often linked to. When a program is installed or
else than the average number of outgoing litksor incom- upgraded, it often happens that it needs an updated version of

o . some library. The dilemma, partly responsible for the so-
ing links {(g) in the context of software structures, and bothCalled “DLL hell” in wINDOWS operating systems, is the fol-

are equal. If the outgoing link distribution is a power law and\,ying: if one does not install the new version of the library,
has an exponent smaller than[B9], both branching vari- he new program is likely not to work properly. If one up-
ances are infinite. At first, this provides an intuitive althoughqates the library, all the programs that link to its old version
incomplete explanation of why the basin distribution expo-are susceptible to be broken. This provides a natural mecha-
nents are the same. Although the analogy is not perfect, iism for progressive worsening of operating system instabil-
may be that there is also some sort of universality with re4ty, There are two solutions: either one implements a way of
spect to basin distributions in these networks, since the eXgsing several version of libraries at the same time, or one
ponent found seem to be multiples of 1/2. This is an intersystematically upgrades all the programs using the library in
esting open challenge. The question is whether largeguestion. Assuming that new versions of programs are avail-
exponents, hence more robust and easier-to-debug softwatgyle, the first possibility applies mostly to commercial pro-
can be obtained at all. If the answer is negative, the fragilitygramS, because the cost associated with upgrading expensive
software and the difficulty of debugging are doomed not tosoftware may be very high; the second solution is the way
be bounded in the worst case. for instanceLiNUx distributions work, but leads sometimes

A still simple but more realistic model of bug propagation g upgrading a very large number of programs, which is
consists in assuming that a node linking to a faulty or af-frowned up by the users. At any rate, one should not under-
fected node is itself affected with probability The rationale  estimate the importance of this problem: not only the distri-

1000 Lo —— bug basin
J— deb._:gging basin

s Y

(n=fH)1(n=I)
(n=f=DH!n!

p=1-

100 +

rank

10 ¢

1 10 100 1000
Basin size

is the following: assume that nodecalls nodej. In the
context of software packagep,takes into account the fact
that j, the faulty/affected node contains subpackagsee
above which are typically not all defective/affected. Simi-
larly, the subpackages oflo not all link to a faulty subpack-
age ofj. For instance, if there ane subpackages in both
andj, and if there ard faulty subpackages ij and if every
subpackage of hasl links that point each to a randomly
chosen subpackage ¢f using elementary combinatorics,
one finds fom-f>1,

bution of incoming links implies that the average number of
affected programs diverges with the system size, but even
worse, as shown by Fig. 2, libraries are characterized by an
even larger number of incoming links.

In conclusion, we argued that the fragility of software can
be in part attributed to its very structure, which unfortunately
seems to arise naturally from optimization considerations.

D.C. thanks Paolo De Los Rios, Andrea Capocci, and
Ginestra Bianconi for useful discussions.
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